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Motivation

-> Giannone et al. (2008); Doz et al. (2011) spurred
renewed interest and development of new
methodologies
-> primarily of aggregate GDP or components, using
official data with focus on accounting for its staggered
nature through the quarter

>> Recent Covid experience highlighted the need for
alternative data sources

-> VoxEU of Diebold (2020); Woloszko (2020) on use of
Google Trends; Blanchflower and Bryson (2021) on
qualitative surveys or the "economics of walking about"
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renewed interest and development of new
methodologies
-> primarily of aggregate GDP or components, using
official data with focus on accounting for its staggered
nature through the quarter

>> Recent Covid experience highlighted the need for
alternative data sources

-> VoxEU of Diebold (2020); Woloszko (2020) on use of
Google Trends; Blanchflower and Bryson (2021) on
qualitative surveys or the "economics of walking about"

>> The Feb 24th russian invasion led to a freeze of all
official data gathering by local and national statistical
agencies

--> only left with alternative data sources




This Project

Rely on alternative indicators to build traditional nowcasting
DFM models of key macro variables

-> using payments data as in Galbraith and Tkacz (2018), Chapman
and Desai (2021) : unavailable timespan and depth in April 2022
although very useful afterwards and in use in policy applications

-> using electricity and google/apple mobility data: not available
due to security reasons in the early stages of the invasion;

Main issue: many of the available variables may have no, or very weak, relation to the
latent factors driving GDP




Research Context

1. New methods needed to match statistcal properties of

available data
-> No official statistics released until mid 2022; use alternative data as
identified in development economics literature
-> Lit considers primarily peace-time GDP estimation: NL and Twitter
possibly "flip" signs during the course of the invasion leading to
inconsistent parameters; Twitter data recently for a fee
-> Google Trends not entirely immune to these issue given the nature of
the shock ->> different factor model specification and/or estimation

2. Existing forecasting/nowcasting frameworks focus on

national level GDP and/or components
-> Spatial heterogeneity ->> scope for regional factor model

data-summary:

- Quarterly GDP aggregate data (Q4 2021) and yearly regional
GDP data (2020)

- Google Trends (aggregate and regional)
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Google Trends Data

Google Trends = Volume indices of keyword search intensity

> Ettredge et al (2005) is one of the
to forecast US unemployment
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Google Trends - empirics

> Ettredge et al. (2005) is one of the earlier references using Google Search activity
to forecast US unemployment.

> Askits Zimmermann (2009) "Google Econometrics and Unemployment
Forecasting" use Google searches related to unemployment to forecast offical
figures several months ahead.
> This is particularly relevant as in 2008-2009, data releases on key macrovariables are
usually delayed several months as compared to observed macro and financial shocks

> Choi and Varian (2010) "Prediciting the Present with Google Trends" makes a
strong point for the use of Google trends data to nowcast a multitude of economic
variables such as car sales, unemployment claims, travel, and consumer
confidence.

>Wu and Brynjolfsson (2010) leverage Google Search Data to forecast house

prices
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> Ettredge et al. (2005) is one of the earlier references using Google Search activity
to forecast US unemployment.

> Askits Zimmermann (2009) "Google Econometrics and Unemployment
Forecasting” use Google searches related to unemployment to forecast offical

figures several months ahead.
> This is particularly relevant as in 2008-2009, data releases on key macrovariables are
usually delayed several months as compared to observed macro and financial shocks

> Choi and Varian (2010) "Prediciting the Present with Google Trends" makes a
strong point for the use of Google trends data to nowcast a multitude of economic
variables such as car sales, unemployment claims, travel, and consumer
confidence.

>Wu and Brynjolfsson (2010) leverage Google Search Data to forecast house
prices



Google Inflation (blue) and Economy (orange)
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> Ettredge et al. (2005) is one of the earlier references using Google Search activity
to forecast US unemployment.

> Askits Zimmermann (2009) "Google Econometrics and Unemployment
Forecasting" use Google searches related to unemployment to forecast offical
figures several months ahead.
> This is particularly relevant as in 2008-2009, data releases on key macrovariables are
usually delayed several months as compared to observed macro and financial shocks

> Choi and Varian (2010) "Prediciting the Present with Google Trends" makes a
strong point for the use of Google trends data to nowcast a multitude of economic
variables such as car sales, unemployment claims, travel, and consumer
confidence.

>Wu and Brynjolfsson (2010) leverage Google Search Data to forecast house
prices
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Google Trends - empirics

-> About 35 trends are used

-> Monthly time series contain plenty
of variation (too much?) >> Q

-> Number implies some shrinkage/
dimensionality reduction is needed
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DFM

Nowcasting and near term forecasting relie on
(exact or approximate) Dynamic Factor Models
specified and estimated either via a standard

Kalman Filter or EM
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Common factors can be consistently
estimated by principal components given
weak correlation of errors
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PCR - digging deeper

Principal Components

-> Given a data matrix X (N obs x p variables). PCA will
perform a SVD of the centered matrix X* to find
directions in the column space of X* that have small
variance (with direction vectors v independent of
each other)

max,, Var(Xao)

subject to |[a]| =1, aTSvy =0, £=1,...,m —1,

Lasso Principal Companents Regresson

Parlial Least Squares

Partial Least Squares

=> PLS is a supervised method which identifies the components
or factors (phi) to be independent of each other but also have
high correlation with a target y

{Wold et al. 1984}

max,, Corr*(y, Xa)Var(Xa)
subject to ||al| =1, alS¢r=0,0=1,...,m—1.

Hastie, Tibshirani, Friedman 2nd ed. "The Elements of Statistical Learning®

PLS as a Latent Factor Model




Principal Components

-> Given a data matrix X (N obs x p variables). PCA will

perform a SVD of the centered matrix X* to find
directions in the column space of X* that have small
variance (with direction vectors v independent of

each other)

max, Var(Xao)

subject to ||a| =1, a?Svy =0, £ =1,...,m — 1,



Partial Least Squares

=> PLS is a supervised method which identifies the components
or factors (phi) to be independent of each other but also have

high correlation with a target y
{Wold et al. 1984}

max,, Corr®(y, Xa)Var(Xa)

subject to [la|| =1, a!SP, =0, £=1,...,m — 1.

Hastie, Tibshirani, Friedman 2nd ed. "The Elements of Statistical Learning"
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PLS as a Latent Factor Model



PLS as a Latent Factor Model



PLS as a Latent Factor Model

T = XxW XeRYWTceRSE K<p
X = TxP +e PeRPE

y = TxC'+¢ CeRXE
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PLS in Macro

Although a close cousin of PCR, PLS is a bit the Harry&Meghan of the
macro econometric family

>> first emerged as a computational algorithm to tackle multicolinearity in
bioinformatics lacking the needed theoretical scafolding Wold (1984)

>> Helland (1990) illuminates the relationship between PLS and PCR
presenting conditions under which the two methodologies yield similar
results.

>> Stoica and Séderstrom (1998) explore conditions under which PCR and
PLS produce equivalent results, deriving asymptotic formulas for bias and
variance of the PLS estimator.

>> PLS in macroeconomic forecasting in Eickmeier and Ng (2011),
Cubadda et al. (2013), Groen and Kapetanios (2016), and in finance in the
study by Preda and Saporta (2005) and Kelly and Pruitt (2015)
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Sparsity to tackle asymptotic inconsistency risk

-> Chun and Keles (2010) indicate challenges to asymptaotic
consistency of the PLS estimator in a "large p small n” context, with
fixed pa relevant and increasing p - pa frrelevant variables.

-> The intuition for the lack of asymptotic consistency comes from
the ridge-like nature of the PLS algorithm. Given that PLS latent
factors load on all variables available in X, a larger fraction of
irrelevant variables weaken the ability of the algorithm to identify
the true factor directions.

-> Sparsity is achieved via variable selection in a multitude of ways,

depending on the joint specificities of data sample and machine
learning model (Lasso like, FWD or BWD Variable Selection, GA)

Insample Fit

ML model overview

Variable Selection - overview

-> A wrapper (GA) and an embbeded method (sPLS) are used to
induce sparsity: as a results, variable selection leads to improved
interpretability

-> sPLS of Chun and Keles (2010) introduces a LASSO penalty in

the optimization problem and jointly selects the optimal number of
latent factors and the amount of penaty

Out of sample Forecast

Variable Selection - the GA algorithm
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-> Chun and Keles (2010) indicate challenges to asymptotic
consistency of the PLS estimator in a "large p small n” context, with

fixed p1 relevant and increasing p - p1 irrelevant variables.

-> The intuition for the lack of asymptotic consistency comes from
the ridge-like nature of the PLS algorithm. Given that PLS latent
factors load on all variables available in X, a larger fraction of
irrelevant variables weaken the ability of the algorithm to identify

the true factor directions.

-> Sparsity is achieved via variable selection in a multitude of ways,
depending on the joint specificities of data sample and machine
learning model (Lasso like, FWD or BWD Variable Selection, GA)



-> Awrapper (GA) and an embbeded method (sPLS) are used to
iInduce sparsity: as a results, variable selection leads to improved
interpretability

-> sPLS of Chun and Keles (2010) introduces a LASSO penalty in
the optimization problem and jointly selects the optimal number of
latent factors and the amount of penaty
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final considerations

-> There may be non-trivial benefits in the estimation of
latent factors via Partial Least Squares

-> Sparsity can improve estimation performance and
model interpretability

-> Geographical disaggregation offers a new modelling
avenue in terms of nowvacsting/forecasting GDP
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